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Generalization of Blocks for D-Lattices and Lattice-
Ordered Effect Algebras
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We show that every D-lattice (lattice-ordered effect algebra) P is a set-theoretic
union of maximal subsets of mutually compatible elements, called blocks.
Moreover, blocks are sub-D-lattices and sub-effect-algebras of P which are MV-
algebras closed with respect to all suprema and infima existing in P.

1. INTRODUCTION AND BASIC DEFINITIONS

Kôpka [11] introduced a new algebraic structure of fuzzy sets, a D-
poset of fuzzy sets. A difference of comparable fuzzy sets is a primary
operation in this structure. Later, Kôpka and Chovanec [13], by transferring
the properties of a difference operation of D-poset of fuzzy sets to an arbitrary
partially ordered set, obtained a new algebraic structure, a D-poset that
generalizes orthoalgebras and MV-algebras (see also ref. 6).

Definition 1.1. [13] Let (P, #) be a poset with the least element 0 and
the greatest element 1. Let * be a partial binary operation on P such that
b * a is defined iff a # b. Then (P; #, *, 0, 1) is called a difference poset
(D-poset) if the following conditions are satisfied:

(Di) For any a P P, a * 0 5 a.
(Dii) If a # b # c, then c * b # c * a and (c * a) * (c * b) 5

b * a.

Effect algebras (introduced by Foulis and Bennett [5]) are important for
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modeling unsharp measurements in Hilbert space: The set of all effects is
the set of all self-adjoint operators T on a Hilbert space H with 0 # T # 1.
In a general algebraic form an effect algebra is defined as follows:

Definition 1.2. A structure (E; %, 0, 1) is called an effect algebra if 0,
1 are two distinguished elements and % is a partially defined binary operation
on P which satisfies the following conditions for any a, b, c P E:

(Ei) b % a 5 a % b if a % is defined.
(Eii) (a % b) % c 5 a % (b % c) if one side is defined.

(Eiii) For every a P P there exists a unique b P P such that a % b 5 1.
(Eiv) If 1 % a is defined, then a 5 0.

Later Foulis proved that, if, on a D-poset (P; #, *, 0, 1) [effect algebra
(P; %, 0, 1)] a partial operation % (*) is defined by

a % b is defined and a % b 5 c iff a # c and c * a 5 b

then P becomes an effect algebra (D-poset). On the other hand in ref. 18 it
has been shown that if Q is a subalgebra of an effect algebra (E; %, 0, 1)
(i.e., 1 P Q and a, b P Q implies a % b P Q), then Q need not be a
subalgebra of the D poset (E; *, 0, 1) derived from the given effect algebra
(i.e., a, b P Q, a # b, need not imply b * a P Q).

Definition 1.3. Q # P is a sub-D-poset of a D-poset (P; #, *, 0, 1) [a
sub-effect algebra of an effect algebra (P; %, 0, 1)] iff 1 P Q and from
elements a, b, c P P such that b * a 5 c (equivalently b 5 a % c) at least
two are in Q, then a, b, c P Q.

In ref. 14 the compatibility of two elements of a D-poset (P; #, *, 0,
1) was introduced. We say that a, b P P are compatible (a } b) if there
exist u, v, w P P such that a 5 u % w and b 5 w % v, and u % w % v is
defined. If P is a lattice, then it is called a D-lattice and then a } b iff (a ∨ b)
* b 5 a * (a ∧ b) [14]. In a D-lattice P for every a, b P P we have a 5
(a ∧ b) % (a * (a ∧ b)) and hence a } b iff a % (b * (a ∧ b)) exists. The
notion of compatibility of elements of an effect algebra is defined by the
same way.

Lemma 1.4. For elements of a lattice effect algebra (E; %, 0, 1) the
following conditions are satisfied:

(i) If u # a, v # b, and a % b is defined, then u % v is defined.
(ii) If b % c is defined, then a # b iff a % c # b % c.

(iii) If a % c and b % c are defined, then (a % c) ∨ (b % c) 5 (a ∨ b)
% c.

(iv) a # b iff b8 5 1 * b # 1 * a 5 a8.
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The proof is left to the reader.

2. BLOCKS IN D-LATTICES AND LATTICE EFFECT
ALGEBRAS

Theorem 2.1. Let (P; #, *, 0, 1) be a D-lattice and let x, y, z P P be
such that x } z and y } z. Then

(i) x ∨ y } z.
(ii) If x # y, then y * x } z.

(iii) x8 5 1 * x } z.
(iv) x ∧ y } z.
(v) If x # y8, then x % y } z.

Proof. By assumptions there exist x % (z * (x ∧ z)) and y % (z * ( y ∧ z)).
(i) Since x ∧ z, y ∧ z # (x ∨ y) ∧ z # z, we obtain z * ((x ∨ y) ∧z) #

z * (x ∧ z), z * ( y ∧ z), and hence (x % (z * (x ∧ z))) ∨ ( y % (z * ( y ∧
z))) $ (x % (z * ((x ∨ y) ∧ z))) ∨ ( y % (z * ((x ∨ y) ∧ z))) 5 (x ∨ y) %
(z * ((x ∨ y) ∧ z)), which implies that x ∨ y } z.

(ii) If x # y, then x ∧ z # y ∧ z and x ∨ z # y ∨ z. It follows that there
exists w P P such that (x ∧ z) % w 5 y ∧ z and x ∨ z 5 x % (z * (x ∧ z))
# y ∨ z 5 y % (z * ( y ∧ z)) 5 (y ∧ z) % ( y * ( y ∧ z)) % (z * ( y ∧ z)),
thus (x ∧ z) % (x * (x ∧ z)) % (z * (x ∧ z)) # ( y ∧ z) % ( y * ( y ∧ z)) %
(z * ( y ∧ z)), and since z 5 (x ∧ z) % (z * (x ∧ z)) 5 ( y ∧ z) % (z * ( y
∧ z)) we obtain x * (x ∧ z) # y * ( y ∧ z). The last implies that there is e
P P such that (x * (x ∧ z)) % e 5 y * ( y ∧ z). We obtain y 5 (x ∧ z) %
w % e % (x * (x ∧ z)) and y % (z * ( y ∧ z)) 5 (x ∧ z) % w % e % (x *
(x ∧ z)) % (z * ( y ∧ z)). These equalities imply that y * x 5 w % e and
z 5 w % [(x ∧ z) % (z * ( y ∧ z))], since (x ∧ z) % w 5 y ∧ z. We conclude
that y * x } z since w % e % [(x ∧ z) % (z * ( y ∧ z))] exists.

(iii) Evidently 1 } z and x # 1, which implies by (ii) that x8 5 1 *
x } z.

(iv) By (iii) x8 } z and y8 } z, which by (i) implies that x8 ∨ y8 } z
and by (iii) x ∧ y 5 (x8 ∨ y8)8 } z.

(v) x % y 5 1 * (x8 * y) } z by conditions (ii) and (iii).

Corollary 2.2. Every maximal subset M of mutually compatible elements
of a D-lattice (P; #, *, 0, 1) is a sub-D-lattice of P.

Corollary 2.3. Every maximal subset M of mutually compatible elements
of a lattice effect algebra (P; %, 0, 1) is a sub-effect-algebra of P.

Definition 2.4. A maximal subset M of mutually compatible elements
of a D-lattice (lattice effect algebra) P is called a block of P.
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Theorem 2.5. Every D-lattice (lattice effect algebra) P is a set-theoretic
union of its blocks. Every subset A # P of mutually compatible elements is
contained in a block.

Proof. Let 0⁄ Þ A # P be a set of mutually compatible elements of P
and ! 5 {B # P.A # B, B is a set of mutually compatible elements}. Then
every chain @ # ! (i.e., for X, Y P @ we have X # Y or Y # X ) the set
ø@ P !. By the maximal principle there exists a maximal element M P
!. Moreover, for a P P the set A 5 {0, a, a8, 1} is mutually compatible.

3. BLOCKS OF D-LATTICES (LATTICE EFFECT ALGEBRAS)
AND MV-ALGEBRAS

The notion of an MV-algebra was introduced by Chang [3] for giving
an algebraic structure to the infinite-valued Lukasiewicz propositional logics.
Later, relations of MV-algebras to the theory of linearly ordered groups [4],
fuzzy set theory [1], and functional analysis and lattice-ordered groups [15]
were shown. Recently Kôpka and Chovanec have shown that MV-algebras
are Boolean D-posets which are D-lattices of mutually compatible elements
[13, 14].

In ref. 15 an MV-algebra is defined as follows:

Definition 3.1. An MV-algebra is an algebra (!, %, ∗, 0, 1), where !
is a nonempty set, 0 and 1 are constant elements of !, % is a binary operation,
and ∗ is a unary operation, satisfying the following axioms:

(MVA1) (a % b) 5 (b % a).
(MVA2) (a % b) % c 5 a % (b % c).
(MVA3) a % 0 5 a.
(MVA4) a % 1 5 1.
(MVA5) (a*)* 5 a.
(MVA6) 0* 5 1.
(MVA7) a % a* 5 1.
(MVA8) (a* % b)* % b 5 (a % b*)* % a.

The lattice operations ∨ and ∧ are defined by the formulas

a ∨ b 5 (a* % b)* % b and a ∧ b 5 ((a % b*)* % b*)*

We write a # b iff a ∨ b 5 b. The relation # is a partial ordering on !,
and 0 # a # 1 for any a P !. An MV-algebra is a distributive lattice with
respect to the operations ∨ and ∧. We put
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b * a :5 (a % b*)* for a # b, a, b P P

Then an MV-algebra ! becomes a D-lattice, more precisely, a distributive
D-lattice [14].

Conversely, if (M, #, *, 0, 1) is a D-lattice of mutually compatible
elements and we put a* 5 1 * a, a 2 b 5 a * (a ∧ b), and a % b 5 (a* 2
b)* for all a, b P M, then (M; %, ∗, 0, 1) is and MV-algebra [14].

Theorem 3.2. Every D-lattice (lattice effect algebra) P is a set-theoretic
union of MV-algebras being blocks of P.

Remark 3.3. It is known that if x ∨ x8 5 1 for every element x of a D-
lattice (P; #, *, 0, 1), then (P; #, 8, 0, 1) is an orthomodular lattice [13,
9]. In such a case blocks of a D-lattice P become maximal Boolean subalgebras
of orthomodular lattice P [9, 16]. This is because an MV-algebra M in which
x ∨ x8 5 1 for all x P M is a Boolean algebra.

The notion of a central element of an effect algebra (E; %, 0, 1) was
introduced by Greechie et al. [7]:

Definition 3.3. For an effect algebra (E; %, 0, 1) an element z P E is
called central iff for every x P E there exist x ∧ z and x ∧ z8 and x 5 (x ∧
z) ∨ (x ∧ z8). The set C(E ) of all central elements of E is called the center
of E.

Remark 3.4. In ref. 17 it has been shown that for a lattice effect algebra
(E; %, 0, 1) an element z P E is central iff z ∧ z8 5 0 and z } x for all x P
E. In ref. 5 an element z P E is called isotropic iff z % z is defined in E.
We obtain the following statement:

Theorem 3.5. The intersection M(E ) of all blocks of a lattice effect
algebra (E; %, 0, 1) is the center of E iff no element of M(E ) is isotropic.

4. BLOCKS OF D-LATTICES (LATTICE EFFECT ALGEBRAS)
ARE CLOSED SETS IN ORDER TOPOLOGY

Recall that for a net (xa)aP« of elements of a poset (P; #) (i.e., a subset
of P indexed by a directed set «) we say that xa order converges to x P P iff
there exist nets (ua)aP«, (va)aP« such that ua # xa # va for all a and ua ↑ x,
va ↓ x. Here xa ↑ x means that ∨{xa.a P «} 5 x and ua1 # ua2 for all a1 #
a2. The symbol va ↓ x is dual.

Lemma 4.1. Let (P; #, *, 0, 1) be a D-poset. Let (ua)aP«, (va)aP« # P
be nets such that ua # va for all a and ua ↑ x, va ↓ y. Then x # y and va *
ua ↓ y * x.
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Proof. For every a, b P « there exists g P « such that a, b # g and
hence ua # ug # vg # vb ↓ y. It follows that ua # y for all a P « and hence
x # y. Moreover, ua # x # y # va ⇒ y * x # va * ua. If z # va * ua for
all a, then z % ua ↑ z % x and z % ua # va ↓ y. The last implies that z %
x # y, which implies that z # y * x. We obtain that y * x 5 ∧{va * ua.a
P «}.

Lemma 4.2. Let (xa)aP« # P be a net of elements of a D-lattice (P; #,

*, 0, 1). If xa →
(o)

x and xa } y for all a, then x } y.

Proof. Since xa →
(o)

x, there are nets (ua)aP«, (va)aP« # P such that ua ↑
x, va ↓ y, and ua # xa # va for all a P «. The assumption xa } y implies
that xa ∨ y 5 xa % ( y * (xa ∧ y)) $ ua % ( y * (va ∧ y)). Moreover, xa ∧
y # va ∧ y # y, which implies that y * (va ∧ y) # y * (xa ∧ y). Evidently,
va ∧ y ↓ x ∧ y and y * (va ∧ y) ↑ y * (x ∧ y). Further, y * (va ∧ y) # 1 *
ua ↓ 1 * x and hence y * (x ∧ y) # 1 * x. It follows that x % ( y * (x ∧
y)) is defined. We conclude that x } y.

Recall that a subset F of a poset (P; #) is a closed set in the order
topology to on P iff F contains all order limits of order-convergent nets of
elements of F. Thus Lemma 4.2 has the following corollary:

Theorem 4.3. Every block of a D-lattice (P; #, *, 0, 1) [lattice effect
algebra (P; %, 0, 1)] is a to-closed set in order topology to on P.

Corollary 4.4. Let M # P be a block of a D-lattice (P; #, *, 0, 1)
[lattice effect algebra (P; %, 0, 1)] and A # M. Then:

(i) If ∨A exists in P, then ∨A P M
(ii) If ∧A exists in P, then ∧A P M.

Proof. Assume that « 5 {a # A.a is finite} and put ua 5 ∨a, va 5
∧a for every a P «. If ∨A exists, then ua ↑ ∨A and by Theorem 4.3 we
obtain ∨A P M. If ∧A exists, then va ↓ ∧A and ∧A P M by Theorem 4.3.
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14. Kôpka, F., and Chovanec, F., Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183–197.
15. Mundici, D., Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct.

Anal. 65 (1986), 15–65.
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